重庆专业音响|多功能厅音响|会议室音响|JBL音响|音响解决方案|安诸拉科技

您所在的位置: 首页 > 专业音响资讯 > 技术资料

  • 功放电路工作原理

    1.互补对称式OTL电路工作原理 目前OTL功率放大器几乎全部采用互补对称式电路,如图3-6所示,集成电路OTL功率放大器内部电路也是采用互补对称电路形式。 图中VT1为推动管,VT2、VT3为互补管,VD4是偏置二极管,它处于正向偏置时,其压降约为0.6V,当其导通时,其内阻很小,因而它对于交流而言是短路的,可以认为是放大器在工作时,交流信号同时加在VT2、VT3两管的基极上。 R3、R4为VT2提供了静态偏置电流,C点电压通过R5、R1为VT1提供一个偏置电压,

    详细内容
  • 常用音响电路(放大电路2)

    线路放大电路 线路放大器为幅频特性曲线平坦的宽带放大器,用于音频信号放大的中间放大级,可用于录音电路和放音电路,放大来自话筒放大电路的输出信号和磁头放大电路的输出信号,以及放大来自录音座,调谐器dvd、cd等线路输出的音频信号,图3-5所示为一个电路实例,这是一个两极直接耦合放大器,加有足够的负反馈,用直流负反馈稳定静态工作点,用深度交流负反馈提高电路性能,反馈电路中的Rf、Cf网络被用于衰减通频带以外的高频噪声

    详细内容
  • 常用音响电路(放大电路)

    放大电路是 音响系统 中应用最多的基本电路,根据其在电路或系统中所处的位置和要求不同,放大电路的形式也不同,以基本放大电路为基础,加入一些元件并进行适当连接,可以组成不同要求的放大电路,通常所说的前置放大器和功率放大器,主要是按信号大小和电路功能不同区分的,若按放大电路的频率特性区分,可分为平直放大和频率均衡放大,若按放大器工作状态区分,可分为甲类、乙类、甲乙类放大等,本节主要按放大音频信号的大小

    详细内容
  • 室内声学基础(房间共振)

    当某物体被外界干扰振动激发时,将按照其本身所具有的固有频率(又称为简正频率或共振频率)而震动,这种现象称为共振现象,激发频率越接近物体的某一固有频率,共振响应就越大,当发生共振现象是声源中某些频率被特定的加强,即出现了声音的干涉,它使声能在房间内重新分布,出现驻波,使得原来声音信号的频谱会发生某种改变,而被赋予外加的音色,从而导致原来的声音产生失真,影响音质。 驻波是由两列振幅和频率相同的声波在同

    详细内容
  • 室内声学基础(混响时间)

    当室内声源停止发声后,声音衰减的过程称为混响过程,混响过程可以用混响时间加以度量,混响时间是指声场达到稳定时,从声源停止发声开始到声压级衰减60db所需的时间,当单个反射声的延迟时间大于50ms时就会产生回声的感觉,而且在房间内会听到很多的反射声,不同的反射声又有不同的延迟时间,人的主观听觉上就会有混响的感觉,如图2-11所示。 在计算混响时间时,通常要计算125Hz、250Hz、500Hz、1kHz、2kHz、4kHz6个频率的值。在未加注明时,

    详细内容
  • 室内声压级

    室内声场可以看作是自由空间的直达声和由许多反射声形成的混响声的叠加,直达声和混响声是不相干的,他们在空间的叠加就表现为声能密度的叠加,生源在室内连续发生,当生产达到稳态时,若是哪个部位的声压相同,且室内声波是无规则的在各个方向传播的,可以说这种声场是均匀的,也可以称为室内达到了声扩散,室内声场扩散越充分,空间感程度越强,这时在距离R处的声压级为: 整个自由空间(声源位于房间中间),Q=1;半自由空间(位

    详细内容
  • 室内声场的建立和衰减过程

    1.室内声场结构 多数情况下,电声 音响系统 是在封闭的空间内工作的,如演播室,影剧院,录音棚等,声波在一个封闭空间的传播,会在室内空间形成复杂的声场,在生场中某一位置上听到的声音有三部分组成,即直达声近次反射声(又称早期反射声)和混响声(多次反射声)。 (1)直达声,指从声源发出的声音直接传播到听音点的声音,直达声主要是传递信息,保证听众区有足够的声压级,提高声音的清晰度。 (2)近次反射声,指相对直达声

    详细内容
  • 双耳效应、哈斯效应

    双耳效应 人耳在头部的两侧,由于声源发出的声音到达双耳的距离不同,在两耳会引起声音的强度差和时间差,然而就是利用声音的时间差和强度差来辨别声音方位的,根据人耳的生理特点,由同一声源首先到达两耳的直达声的最大时间差为0.44-0.5ms,20~200Hz低音主要靠人两耳的相位差定位,0.3~4kHz中音主要靠声压差定位,更高的高音主要靠时间差定位,相比利用单耳听觉来说,双耳听觉的灵敏度更高。并且具有较强的抗干扰能力,利用双耳进行声音

    详细内容
  • 声学基础—听觉效应

    掩蔽效应 声音的掩蔽是心理声学中很重要的效应,生活中人们利用双耳听到声音,但是当两个声音同时出现时,其中的一个声音听感就会受另一个声音的干扰,使该声音的听阀提高,人们在安静环境中能够分辨出轻微的声音,但在嘈杂的环境中却分辨不出轻微的声音,这时需要将轻微的声音增强才能听到,这种一个声音的听阀因另一个声音的存在而提高的现象,称为掩蔽效应。 掩蔽现象在很多情况下都可能产生,但是声音引起掩蔽大体决定于其强度

    详细内容
  • 声学基础---听觉的主观感受之音调、音色

    音调 人耳对声音频率高低的感觉称为音调,在音频范围内,纯音的频率由小到大逐渐变化,听觉上会产生与此相应的逐渐变化的感觉,通常以声音从低音到高音逐渐变化进行描述,这就是音调的变化。 音调的单位为美(mel)响度为1kHz的纯音所产生的音调是1000mel,另一个声音与之比较,如果二者的音高感觉相同,那么纯音的频率即可用来描述这一声音的音高,像响度一样,音调也是一种听觉的主观心理量,是判断声音高低的尺度,在音乐中它主要是

    详细内容
  • 声学基础---听觉的主观感受之响度

    听觉是人们对声音的主观反映,想要评价 音响系统 所放声音效果的好坏,通常需要定量测定频率响应、声压级、失真度和混响时间等技术参数来精确客观的表现系统的特性,但是客观的测试还是不够的,如声音的丰满度,圆润度及柔和度等还无法用仪器来测定,声音需要靠人耳来做最后的评价,任何声音都可以用频率、相位和幅度3个客观的物理量来表示,声音的主观量最基本的有响度,音调和音色,了解这些参数,并根据人耳的听觉特性,采取相

    详细内容
  • 声压级、声强级和声功率级

    先取声压级最大的2个声源的声压级差值D=5dB,在图中查出与D相对应的N值为1.2dB,则合成的声压级为(100+1.2)dB=101.2dB。 再取声压级相对较大的2个生源的声压级差值D=101.2-93=8.2dB,在图中查出与D相对应的N值近似为0.6dB,则合成的声压级为(101.2+0.6)dB=101.8dB。 依次计算下去,再进行三次叠加后与D相对应的N值近似为0.3dB,合成的声压级为102.1db,与其余未叠加的声压级的差值均超过15db,附加值很小,可见总声压级主要决定于前四个数字,其余的作用不大

    详细内容
首页 345678910111213 尾页 共 1131 条记录
 
QQ在线咨询
咨询热线
023-68182464
咨询热线
13368410608

扫描二维码分享到微信

下载二维码